
 

 

 

THE OFFICE OF THE STATE CHIEF INFORMATION OFFICER 
ENTERPRISE TECHNOLOGY STRATEGIES 
North Carolina Statewide Technical Architecture 

Implementation Guidelines: 
Application Architecture 

 



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

Implementation Guidelines: 
           Application Architecture  

    

 
 
 
 
 
 
 
 
 
 
 
Initial Release Date: May 29, 2003 Version: 1.0.0 
Revision Approved Date: Not Applicable 
Date of Last Review: March 11, 2004 Version: 1.0.1 
Date Retired:  
Architecture Interdependencies:   
Reviewer Notes: Reviewed and updated office title and copyright date. Added a hyperlink for the 
ETS email – March 11, 2004. 

 
 

 2004 State of North Carolina 
Office of the State Chief Information Officer 

Enterprise Technology Strategies 
 PO Box 17209 

 Raleigh, North Carolina 27699-7209 
 Telephone (919) 981-5510 

ets@ncmail.net 
 

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any 
form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage 

system without written permission from the copyright owner. 

 
 

1

mailto:ets@ncmail.net


S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

 

INTRODUCTION ......................................................................................... 3 

IMPLEMENTATION GUIDELINES .......................................................... 3 

IMPLEMENTATION GUIDELINES FOR THE DESIGN AND DEVELOPMENT OF 
APPLICATIONS.................................................................................................................... 3 

Guideline 1: Use a three-tier architecture with access to N-tier shared services....................... 3 
IMPLEMENTATION GUIDELINES FOR MANAGING APPLICATIONS ............................. 4 

Guideline 1: Design Instrumented applications that can report conditions and receive 
commands........................................................................................................................... 4 
Guideline 2: Design applications to report resource thresholds so administrators can proactively 
intervene to prevent applications from failing. ....................................................................... 4 

IMPLEMENTATION GUIDELINES FOR COMPONENT REUSE ....................................... 5 
Guideline 1: Copying or linking code into applications should be avoided, in favor of using 
callable services and object technology. .................................................................................. 5 
Guideline 2: Eliminate code redundancy in applications and between applications by creating 
and implementing reusable components................................................................................. 5 

IMPLEMENTATION GUIDELINES FOR COMPONENT SERVICES .................................. 6 
Guideline 1: Proprietary security products must be phased out in favor of solutions that use 
open security protocol standards. .......................................................................................... 6 

IMPLEMENTATION GUIDELINES FOR OBJECT-ORIENTED COMPONENTS............... 7 
Guideline 2: Design applications to create new reusable components and to reuse existing 
reusable services. ................................................................................................................. 7 

IMPLEMENTATION GUIDELINES FOR SOFTWARE ACCESSIBILITY ............................. 7 
Guideline 1: Provide navigation tools and orientation information in pages to maximize 
accessibility and usability..................................................................................................... 7 

 
 

2



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

Introduction 
 

The intent of this document is to provide general implementation guidelines 

within the application technical domain.  This will help to ensure that the State of 
North Carolina adopts uniform and consistent implementations of application 
solutions across the enterprise.  

The key goal of this document is to outline implementation guidelines that, when 
followed by the solution developers, will lead to a well-designed application 
solution that has the flexibility to grow with changes in technology and can be 
maintained in an efficient and effective manner. This is a fundamental principle of 
the North Carolina Statewide Technical Architecture. 

This implementation guild is currently being revised both to better reflect the state of technology and 
improve upon existing architectural guidelines to better support state agency initiatives.  

Implementation Guidelines  
 
Implementation Guidelines for the design and 
development of applications    
 
Guideline 1: Use a three-tier architecture with access to N-
tier shared services. 
 
Rationale 

• Large, complex projects that are anticipated to have high usage volumes 
and/or long life spans will be better served by implementing applications 
with a three-tier architecture with access to an N-tier service oriented 
architecture.  

• Three-tier client/server applications can be easier to modify to support 
changes in business rules.  

• With three-tier client/server applications, there is less risk in modifying the 
code which implements any given business rule.  

• Three-tier client/server applications can be made to support multiple user 
interfaces: character, graphical, web browser, telephones, and others. 

 
 

3



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

 
Implementation Approach for Applications 

Avoid New Deployment
Migrate from Technology

Current Technology 
Direction 

Emerging Technology 

Monolithic applications Web-enabled front-end. 
This de-couples the user 
interface from the other 
code and allows changing 
the application architecture 
without affecting the user. 

Object-oriented application 
architecture 

   

Two-tier applications Three-tier architecture with 
access to N-tier shared 
services.  

Object-oriented Enterprise 
Java Bean and servlet 
application architecture 

   

 

Table 1 – Implementation Approach for Applications 

 
Implementation Guidelines for managing applications  
 
Guideline 1: Design Instrumented applications that can 
report conditions and receive commands. 
 
Rationale 

• Manual administration is better than none at all, but adding automatic 
monitoring to an application is more efficient, and gives the administrator a 
better opportunity to manage the system effectively. 

Guideline 2: Design applications to report resource 
thresholds so administrators can proactively intervene to 
prevent applications from failing. 
 

 
 

4



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

Rationale 

• Proactive identification of potential problems causes fewer impacts to the 
user and is often simpler to resolve appropriately. 

Implementation Approach for Designing Manageable Applications 

Avoid New Deployment 
Migrate from Technology

Current Technology 
Direction 

Emerging 
Technology 

Unmanageable applications Instrumented applications that 
can report conditions and 
receive commands. 

None at this time 

Reporting failures and 
outages. 

Reporting resource thresholds 
so administrators can 
proactively intervene to prevent 
applications from failing. 

None at this time 

 

Table 2 - Implementation Approach for Designing Manageable Applications 

 
Implementation Guidelines for Component Reuse 
 
Guideline 1: Copying or linking code into applications 
should be avoided, in favor of using callable services and 
object technology. 
 
Rationale 

• Copying and linking code into an application are popular but expensive 
reuse methods because maintenance coding, testing, and debugging must be 
performed everywhere the code has been used in the application. 

 
Guideline 2: Eliminate code redundancy in applications and 
between applications by creating and implementing 
reusable components. 
 

 
 

5



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

Rationale 

• Reusable components that provide common functions can be designed with 
a common API in order to allow operability with a variety of applications 
regardless of platforms and operating systems used. 

• Legacy applications can be modified to use shared services as they become 
available. 

Implementation Approach for Reusable Components 

Avoid New Deployment  
Migrate from Technology

Technology Direction Emerging Technology 

Copying or linking code 
into each application 

Callable services Object technology 

Redundancy of code in 
monolithic applications 

Reusable components    

 

Table 3 - Implementation Approach for Reusable Components 

 
Implementation Guidelines for Component Services 
 
Guideline 1: Proprietary security products must be phased 
out in favor of solutions that use open security protocol 
standards. 
 
Rationale 

• Security solutions usually require integrating several products together 
rather than implementing a single end-to-end solution. The level of 
interoperability and flexibility required for achieving adequate security levels 
can be accomplished only through implementing pieces that support open 
security protocol standards. 

 
Implementation Approach for Service Components 

Avoid New Deployment  
Migrate from Technology

Technology Direction Emerging Technology 

Proprietary security Open standards based Open protocols written for 

 
 

6



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

products security protocols using 
SSL, IPSec, S/MIME, 
GSS-API 

Common Data Security 
Architecture (CDSA) 

 

Table 4 - Implementation Approach for Service Components 

 
Implementation Guidelines for Object-Oriented 
Components 
 
Guideline 2: Design applications to create new reusable 
components and to reuse existing reusable services. 

Rationale 

• Minimize code and data duplication. 
• Allows greater adaptability of applications, and lower maintenance costs. 
• Sets the stage for using true object-oriented technology. 

 
Implementation Approach for Object-Oriented Componentware 

Avoid New Deployment  
Migrate from Technology

Technology Direction Emerging Technology 

Monolithic design Service oriented 
design 

Object-oriented design

 

Table 5 - Implementation Approach for Object-Oriented Componentware 

Implementation Guidelines for Software Accessibility 
 
Guideline 1: Provide navigation tools and orientation 
information in pages to maximize accessibility and 
usability. 
 

 
 

7



S T A T E W I D E  T E C H N I C A L  A R C H I T E C T U R E  

 

 
 

8

Rationale 

Content developers should make content understandable and navigable. This 
includes not only making the language clear and simple, but also providing 
understandable mechanisms for navigating within and between pages. 

• Not all users can make use of visual clues such as image maps, proportional 
scroll bars, side-by-side frames, or graphics that guide sighted users of 
graphical desktop browsers.  

• Users also lose contextual information when they can only view a portion 
of a page, either because they are accessing the page one word at a time 
(speech synthesis or Braille display), or one section at a time (small display, 
or a magnified display).  

• Without orientation information, users may not be able to understand very 
large tables, lists, menus, etc. 

Implementation Approach for Application Accessibility  

Avoid New Deployment 
Migrate from Technology

Current Technology 
Direction 

Emerging 
Technology 

Inaccessible static pages Provide navigation tools and 
orientation information in 
pages to maximize accessibility 
and usability. 

Accessible Portal-
based development 

 

Table 6 - Software Application Accessibility Implementation Strategies 


	Introduction
	Implementation Guidelines
	Implementation Guidelines for the design and development of applications
	Guideline 1: Use a three-tier architecture with access to N-tier shared services.
	Rationale
	Implementation Approach for Applications


	Implementation Guidelines for managing applications
	Guideline 1: Design Instrumented applications that can report conditions and receive commands.
	Rationale

	Guideline 2: Design applications to report resource thresholds so administrators can proactively intervene to prevent applications from failing.
	Rationale
	Implementation Approach for Designing Manageable Applications


	Implementation Guidelines for Component Reuse
	Guideline 1: Copying or linking code into applications should be avoided, in favor of using callable services and object technology.
	Rationale

	Guideline 2: Eliminate code redundancy in applications and between applications by creating and implementing reusable components.
	Rationale
	Implementation Approach for Reusable Components


	Implementation Guidelines for Component Services
	Guideline 1: Proprietary security products must be phased out in favor of solutions that use open security protocol standards.
	Rationale
	Implementation Approach for Service Components


	Implementation Guidelines for Object-Oriented Components
	Guideline 2: Design applications to create new reusable components and to reuse existing reusable services.
	Implementation Approach for Object-Oriented Componentware


	Implementation Guidelines for Software Accessibility
	Guideline 1: Provide navigation tools and orientation information in pages to maximize accessibility and usability.
	Rationale
	Implementation Approach for Application Accessibility




